AD-A148 184 TOHRRDS RN IDEAL DHTFIBBSE SERVER FOR OFFICE ﬂUTDHRTION 11
ENYIRONMENTS(U) NAYAL POSTGRADUATE SCHOOL MONTEREY CA
S A DEMURJIAN ET AL. OCT 84 NP552-84-918
UNCLASSIFIED F/G 9/2




N ey

ok

A € N W R R S DO na_ g gl

Wn e s

e n W L

-y TR

’

R N e X L e N e e

dAag

2l

MICROCOPY RESOLUTION TEST CHART




W gy > T ey v —
PRI RO AL YRS IS PSS ST AR A W AN AR UL J e S YA DA, Tty iy " Pal ol Ml Al N andl W oa g S Wl St e o~y

NPS52-84-018

NAVAL POSTGRADUATE SCHOOL

Monterey, California

AD-A148 184

TOWARDS AN IDEAL DATABASE SERVER FOR OFFICE
AUTOMATION ENVIRONMENTS

Steven A. Demurjian, David K. Hsiao, Douglas
S. Kerr, and Paula R, Strawser

October 1984

Approved for public release, distribution unlimited =

Prepared for: 5'.7

OIS FILE CORY

Chief of Naval Research N

Arlington, VA 22217 N

LA

-.:':,

84 12 03 026 O

Poes

(u_e-_‘

DA VAN S A B R A N A P N N N I I N, M. R NREN AN




) i B L R 2 Y A N o s et s D o, UL, : R R A T e R R T . B B ey e
2 ¥
v 2
- 47
A ;!
i';\ w
?:5‘. Yo
el s
QQ NAVAL POSTGRADUATE SCHOOL 2
B¢ Monterey, California . 5
!! 2
e Commodore R. H. Shumaker D. A. Schrady .
~ Superintendent Provost ez
.‘ .:--
! 0%
N o
10 Wl
boe!
b

e ‘f;' 4

Ll
]

AN
The work reported herein was supported by Contract N00014-84-7§\g4058
from the Office of Naval Research

Reproduction of all or part of this report is authorized.

This report was prepared by:

(B eTT

121220*l;>{/(g":7%15’27&57_‘

o

. HSIAO
Professor of Computer Science

‘-;“’.’;" L AR
PRy

v
»

n
Reviewed by:

Dean of Information and PolYicy
Sciences

nf'. *
of o0

LT

R
s & ':""" ‘

P ARG L
A N Il
AR Tt NC

R B
fa

¢
A P

ORI

L e 2.
AR

fn P Jh T
a¥ay!

FAAA S
e

7

A

ST

AN

W Ya

+

.y
> S
P

i'::?'

LR S e A i ol "V""R'—.'. AR AR TR YA ST e > -
WAIARXAIA) ~s.h\.n\::“n":£‘_k"_‘-"_h"l\ “\':" *"L"A': = 'A‘\:'L."\'.\' '-'.‘0.\ ‘;.'3:;;.:' 1‘.\'.::..'

e i ;
v LTl T

o .

o, '-Pf'-’ '.3{{f

s %
is s,

.:\ .:;-r'\‘.::'- .\f.‘ .:'-

A

o




SECURITY CLASSIFICATION OF THIS PAGE ("hen Data Enteredd

REPORT DOCUMENTATION PAGE

NPS52-84-018 | '

4. TITLE (and Subtitte) ] c.. TYPL OF REPORY & PEMOD COVERED
Towards An ldeal Database Server For Office

Automation Environments

7. AUTWHOR(e)
Steven A. Demurjian, David K. Hsiao, Douglas
S. Kerr and Paula R, Strawser

[3. PERFORMING ORGANIZATION NAME AND ADDRESS
Naval Postgraduate School
Monterey, California 93943

AM A A
“ "& unIT N [}
61153N; Pro14-08~01
Nooo148fmra050

T — gy Y S SV — ¢ — oY r
6. PERFOMUNG ONG. REPOAT NUNBER

T CONYRACY OK SRANY woabNe |

12. REPORT DATE
October 1984

11. CONTROLLING OFFICE NAME AND ADDAESS
Chief of Naval Research

Arlington, Virginia 22217 "u.u—u?f?‘m

T4, MONITORING AGENCY NAME & ADORESS(I! diiforent from Controlling OWO) 18. SECURITY CLASS. (of his report)

m‘mm

16. DISTRIBUTION STATEMENT (of this Ropert)

17. DISTRIBUTION STATEMENT (of the sbetract entered in Bleck 20, i different from Repes))

16. SUPPLEMENTARY NOTES

19. KEY WORDS (Continuve on alde i

ary and identify by bleck aumber)

BSTRACT (Centinue an reverse oide if and fy by blosk number)
‘ Office automa?io'rr system'sma.:'.e" gro'mg, both in use and in complexity. The

evelopment of a database management system for the office automation environment
ecomes a high priority, in order to provide an efficient and reliable way to
nage the information needs of the office. Therefore, the specification of an
"{deal' database server for the offi~e automation environment becomes a key area
f concern. In addition to providing traditional support, the ideal database
server must also provide new database support, in order to meet the unique and

ny needs of office automation environments. In this paper, we focus on the
DD Jann W73

EOITION OF § MOV €8 18 OsOLETE
$/N 0102- LF-014- 6601

SO O e X SN

~ ~ .

SRCUMTY CLASHFICATION OF THib PAGE (When Doie Bueered

e N T st s a a:,_(_'.-\.-\.\.:,_.:\‘.:,:.-__.-,3-.‘.-

PR

.'A}Sﬂ 4

e

. 'u..
It oy 4y

A
N

4

-0y
'.n'.c'.nl

ST &
% % "

.
",l’

o b % 9 ¢

¢
o 4
»

_‘-.
. <
l‘.. . -l‘.

BN
25

.

.
N
DA




S YN £ h T 00 3 A 5 AR A D)

= hie e 8 —u WL i A k. e R N A STV T PR WS,

KA

SECUMITY CLASNIFICATION OF TS PAGE (Whea Daie Batere®d
characterization and specification of an a abase server tor

tomation environment. We also consider how such an ideal database server can
effectively integrated into the office automation environment. Further, we
ne an experimental database system, known as the multi-backend database

ystem (MBDS), as a candidate for the ideal database server in the office auto-
tion environment,

N
T

Y
.

o 8 3
lasa

I';’T
’

CyageD
o 'rf Ill,', .
.’..f. . 5 .
LLL L lds

.{ (2
e

[ 4
ta
i

$/N 0102 LF-014- 6601

SECUMTY CLASHFICATION OF TINS PAGE(Whea Dete Bntered)

Tt

eate % Lt e e . L et i p e
E:‘_-'.t-'_':,i; Lo ‘ PN

e f a'e® - . . 0
~ -.'.-.'_ " % .,\:,n. ','._.-.:_\;\;u:_-. -.;_-..,-..,-"\' "

- Rt

SRR SR AR LA )
1 e



g, o, 5N A Oy A D B, W R S, T 08 AT P PRETRIC L RSN PRI i a8 NSRS R, L I TN SR e 0 R IR SRR TS

¥
3
;:' TONARDS AN IDEAL DATABASE SERVER
N FOR OFFICE AUTOMATION ENVIRONMENTS »
A Steven A. Demurjian, David K. Hsiao,
‘. Douglas S. Kerr and Paula R. Strawser ==
. October 1984
-
Office automation systems are growing, both in use and in complexity.
) The development of a database management system for the office automation
environment becomes a high priority, in order to provide an efficient and
4. reliable way to manage the information needs of the office. Therefore, the
- specification of an ’ideal’ database server for the office automation environ-
= ment becomes a2 key area of concern. In addition to providing traditional
- database support, the ideal database server must also provide new databsse
support, in order to meet the unique and many needs of office automation
- environments. In this paper, we focus on the characterization and specifica-
N tion of an ideal database server for the office automation environment. We
E also consider how such an ideal database server can be effectively integrated
N into the office automation environment. Further, we examine an experimental
- database system, known as the multi-backend database system (MBDS), as » can-
- didate for the ideal database server in the office automation environment.
%
*?o v .‘,
X = The wo &? ?erem is_supported b Cont.ract. o
- rom_the éce o rch aBd’ gchoo
: r esearch cstgraduate rey, b-r—j‘
. A. ith to Database N
» - r_:;an and D. K. l"‘huo re wi Laborgh rLeoor &- it
2 rey, 1forni Kerr'is wi <
s g"’m ungo:‘ N & *’!&%'5’ %rcﬁ 04
nter, Yo town ights, £
oA
o2
A S
; N
3 N
L d ‘;,-:
- r".-\
S B N T A o RN NI RNNI AN TERIEN




L. talsve TR

As office sutomation systems (OAS) become more prevalent in the work
place, the need for database support in the office automation environment
(OAE) beccmes a key issue. In this paper we attempt to provide the character-
ization of an ideal database server for OAEs. The database server is used to
provide traditional "as wel| as new database support in the OAE. In addition,
we study various approaches to the integration of the datsbase server into an
OAE. In our characterization and study of an ideal server, we focus on the
use of an experimental database system, known as the multi-backend detabase
system (MBDS), as the server. Although MBDS may be far from ideal, it does
serve as 8 benchmark for measuring the other dstabase servers for OAEs. In
the rest of this paper we examine how and why MBDS may be considered as a
database server for the OAE.

More specifically, in Section 2 we discuss the architecture and charac-
teristics of an ideal database server for the OAE. In Section 3 we briefly
describe the design and implementation of MBDS. In Section 4 we analyze how a
database server such as MBDS can be integrated into the OAE. The analysis
focuses on the multiple backend architecture of MBDS and how it does satisfy
the architectural requirements of the ideal OAE database server. In Section
5, we analyze whether the unique design characteristics of MBDS meet the needs
of the OAE. Finally, in Section 6 we conclude this paper.

2. A CHARACTERIZATION OF AN IDEAL DATABASE SERVER

When characterizing an ideal database server for the DAE, .we focus our
efforts in two directions. First, we consider the architectural requirements
of the ideal database server that will facilitate the smooth integration of
the ideal database server into the OAE. Second, we consider the necessary
database system features or characteristics of the ideal database server for
the OAE. In the following two sections, we examine these two considerstions
for an ideal database server in the OAE.

2.1. The Architectural Requirements

The basic structure of the OAE consists of a group of workstations con-
nected using a local-ares network (LAN) (see Figure 1, where a workstation is
denoted with the letter W in a square box). To successful ly meet the needs of
this environment, the ideal detsbese server must be integrated into the exist~

a0 et a

,.‘
Fay '.“4!‘!':'
s IAER

A NS

P T, Y
A
.

-’-ﬂ‘_‘;’;"';'

W

A

P ‘-"‘n’.‘n’:’&‘ ..

s

'-::-;. .

)
L4
o




.‘. L * l’ U.< .}.'.0'.!.. ..l‘ .."A.':.s“..*." ‘.‘ -‘

. R Y

CCOMADIKER

ing OAE. The integration of the ideal datsbase server into the OAE: mumt be
smooth and have no ill-effect on the existing OAS. If the idesl databese
server runs on a single workatation, it must bs powsrful encugh to mest the
detabase management needs of the current and future OAE. Thus, it sesms logi-
cal thet the ideal detabase server should consist of initially a few workste-
tions and Ister a8 nusber of workstetions. With multiple workatations, the
idea! databese server should recuce and distribute the detebase menagament

load across the multiple workstations.

_'l"

|

Figure 1. The Basic OAS

Whether the workstetions, which make up the ides! databess server act as
individua! datasbase systems, or cooperste to handie the detebese manegesent
needs of the OAE, is also an issue. It may not be fessible in a given OAE to
distribute the database management functionslity. and load among different
database servers on the same network, since the OAS is not a distributed date-
base system. The OAE mey require a central repcsitory of dste snd programs,
that is maintained and accessed via a single system, so that the data and pro-
grams can be successfully shared throughout the OAE. Overall, the needs of
the OAE beccme a crucial concern when specifying the architectural require-
menta of the ideal database server. In this considerstion, an ideal database
server for OAEs should be configured as a centralized datsbase system running
on multiple workstations.

2.2. The Six Characteristics

There are six major characteristics of an ides! databesse server. Thoy
are software portability, software independence, auto—-configurability, sur-
vivability, versatility, and performance. Software portability provides the
ideal database server with the ability to be accessible on a wide range of
hardware systems. Specifically, the ideal database server should not be res-
tricted to a particular class of hardwere and a specific type of operating
system. Instead, it should be portable across a wide range of workstetions and
operating systems of the OAE. If the ideal databese driver is implemented on

-0-

.._
Sed e
Fe ey

P
f‘/. ":"v 5
SRA P I

g

v
AN

A0

e

T,
./

LN

fl‘(ﬂ !.
g . ‘.
s

6

20:%20x L‘:-";{'

ala e

kI

..
A
rRXE

c;;

e

.- - l' 'm'
wed

LIPS Uy B ' e I R I I e RS 2 IR VS PR LS P . TS ) LTS JS TR AT RS B B R - T AT AT GRS TGN Ve - RATRCE N . —n
CACAUN AN .:{~~f~l J- s AT ."5 f.. L3\ {\.u-‘a‘.r_.)\ ARG ARG O A S AR 0 Syt




multiple workstations, the software components of the driver runmning on the
separate workstations should be sufficiently independent, so that the ideal
databese server will not become incperative when a node (i.e., either one of
the software components on a workstation or a workstation) becomes dissbled.
Software independence among system components running on separate workstations
may eliminate software and hardware interdependencies and the complexity of
the ides! datsbase server.

When running on multiple workstations, the ideal databsse server should
be auto~configurable and reconfigurable. When the OAE grows, i.e., the number
of workstations in the OAS increases, or a workstation becomes disabled, the
ideal database server should be able to adjust itself for the addition or lcss
of workstations. Such adjustment should require no new programming and no
modification to the existing software drivers. Further, it should incur no
| disruption of the OAE or OAS. The ideal detsbese server should also maintain
‘ a consistent and up-to-date copy of the database. When a node in the OAE is
’ dissbled, it is imperative that the ideal database server still be functional,

providing continuous, albeit |imited, access to the remining database. This
t is also the survivability of the ideal database server.

The ideal datsbese server should also be versatile, providing the user
with more than one way of accessing the datsbese. In an OAE where there is »
large group of individuals from diverse beckgrounds and with different experi-
ences in using datsbese facilities, the ideal database server should provide
different databsse language interfaces in order to facilitate the datsbsse
user with various ways of sccessing the detasbese. Finally, the ideal database
server should be » datasbese system that is oriented towards providing a sub-
stantial level of performence. As time goes by, both the use of the ideal
database server will increase and the dets and programs being stored in the
databsse will incresse. To meet the growing needs of the OAE the ideal date-
base server must be sble to expand as the OAE expends, and either maintain or
increase its performence.

3. THE NEED OF A DATABASE DRIVER WITH MLLTIPLE BAGEND CONFIGURATIONS
- 3.1. The Proposed Architecture for an Ideal Detsbase Driver

We advocate thet the architecture of an ideal databese driver is config-

ured with one controller snd multiple backends. As shown in Figure 2, the :}.r:;
controller and the backends sre connected by s brosdcast bus. When a “*Eg}
RN,
XN
LN
o

i~ . AT TR . et . PR 2 O O A R RATO TN SART G RS CENE DAL SR
| SN AN I AP o A AT RN AT N SN N ITN A, IO NENENENNIINN

-
LA R A -lat




M M w YW - o Ty -
Am?_‘.\u Ty DSy Ayl Jolhe e’ D R ALMR L 1 e S0k N i LA S SR e Ml S PRt A Nt I e o s b St o e o S £ o by ey

transaction is received from the host computer, the control ler broadcasts the
transaction to all the backends. Each backend has a number of dedicated disk
drives. Since the databsse is distributed across the backends, a transaction
can be executed by all backends concurrently. Each backend maintains a queue
of transactions and schedules queries for execution independent of the other
backends, in order to maximize its access operations and to minimize its idle
time. On the other hand, the controller does very little work. It is respon-
sible for receiving and broadcasting transactions, routing results, and
assisting the backends in the insertion of new data. The backends do all the
database operations. Just how this architecture may have the six characteris-
tics of an ideal database server will be expounded in the following sections
by way of an experimental database system which aiso has a similar architec-
tural configuration.

3.2. The Muiti-Backend Database System (MBDS) as a Database Driver

To provide a centralized database system, MBDS uses one or more identical
minicomputers and their disk systems as database backends and a minicomputer
as the database controller to interface with multiple, dissimilar workstations
or mainframes. We shall refer to these workstations and minframes as hosts
or host computers. User access to the centralized databsse is therefore accom-
plished through a host computer which in turn communicates with the con-
troller. Multiple backends are configured in parallel. The original design
and analysis of MBDS are due to J. Menon [HsisBla, HsiaB8lb]. An overview of
MBOS can be found in [He83], with an analysis of the message-passing structure
in [Boyn83a]. The implementation and new design efforts are documented in
[Boyn83b, DemuB4, Kerr82]. The database is distributed across all of the
backends. The database management functions are replicated in each backend,
i.e., all backends have identical software and hardware. They of course have
different portions of the database.

There are some key issues to explore when considering MBDS for OAEs. The
current implementation of MBDS uses minicomputers for both the controller and
the backends. The original intent of the design was to implement a system
which utilizes microprocessor-based computer systems, winchester-type disks
and an Ethernet~|ike broadcast bus. Unfortunately, these were not available
when the implementation of MBDS began in 1980. There are a number of ressons
for preferring microprocessor-based computer systems or workstations over the
traditions! minicomputers. First, the 32-bit microprocesser is quickly

- - L
-------

.................
...............

e
.........

R I

P 4
g il

18 a8 Y

2y

o« LT
")

0 %

v
L A )
R

PP il s

[N 4
rl'_" .'a

5]

.-n ]
S

g - ®
. Y
s .
o v R

P
e ot nAa A,




T T R R R S N R o T RN P IS A g o 95 B NP2 g 2 M B B i AL AP RCY T RS L AR DN g Wl W e et e il e EY o h LA T e aW T

o 1

o ® K> ALt
';., T

'} ."i?:. ]
Sy sento '

-

ST
.
’ 4

one or more o
disk draives ,

one or more
disk drives

LU C 0

To the
y host
compute .

%80

SAS80E,

one or more
disk drives

: . o
A T TR )

Broadcasting

bus

o,

2

&,

5 Figure 2. The MDBS Hardware Organjzation

- R

A i

o )

¥ NN
AN

2

K .

: &

. K ‘\ .c

et

v, ¥

TN NN N

an
g

N e T e S e e e et T AT T AT AT N AT T AT AT AT TR e "
N N R e N D D AN N N AN NN NN

PRI




e R S R N e R e T O O O o T T T I Ty T T e

l"'
r2 k
ol

.

attaining a reputation as a dependable, versatile and fast computer system,

oy

approaching the speed and performance of the minicomputers of five years ago. :'_:

Second, the microprocessor-based system is a cost-effective computer sys- ::‘
tem. This is important when considering that MBDS requires a minimum of two N
computer systems. It also implies that MBDS can be expanded with relative :-.:_',:t
ease and minimal cost by the addition of backend microprocessor-based computer ) ;g
systems. &

The placement of the user interface is also affected by the use of \i
microprocessor-based computer systems. The user interface provides access to ‘
MBDS and is run from either a separate host computer system, or as part of the :.x-—‘
system on the backend controller. When the user interface is on a separate ".3"‘

PRI
st f

host computer, the interface interacts with the controller via a bus. In
either case, the use of a similar (with respect to the controller and backend
hardware) microprocessor-based computer system for the user interface
increases the compatibility and the maintainability (with respect to the
hardware maintenance complexities and costs) of the database system.

> -
KNOER

)
i3
LY

-
WS

» A ]

The final major issue involves the ability of MBDS to support multiple
data model/language interfaces to the multi-backend database system (see
Appendix A). These multiple model/language interfaces allow the user to
access MBDS using the relational model/SQL language, the hierarchical
mode| /DL/1 language, the entity relationship model/Daplex language, or the
network model| /CODASYL language. These interfaces are also running on either a
<eparate host computer or the backend controller; and, as such, the issues
concerning the user interface also apply here.

One final note, in Appendix A, we provide a more detailed discussion of
the attribute-based data model, the attribute-based data language (ABDL), the
MBOS process structure, the system configurations (present and future), and
the multi-lingual capabilities of MBDS.

4. FIVE APPROACHES TO THE INTEGRATION OF MBDS INTO THE QAE .

In this section, we examine how MBDS can be integrated into the office -.'
sutomation environment. Our main focus is on ways to integrate MBDS into the :-
OAE, and the relative advantages/disadvantages of the integration configura- r::.
tions. Recall that the basic OAS, consists of a group of workstations, con- =
nected by a local-area network (LAN) such as an Ethernet [Metc76]. Such a :‘_:E

3
=~

)
puv ]

b
]




D P > o Tl . R MUUT AT TR A LAY TR AL ML R Ly
Em'x‘;‘l-f.‘.i’.‘.a..vrﬂ'v'TI.Z:E-TEL.C?.‘.'v:.;f..lf.x..ﬁ.'u‘t;.'i'.‘.:-.-.z.j'.-,r.»'f.,OA. L2 A SR A AP N O S il L PRRNES TN S A LT AT : % i "-.\,da
|

design was shown in Figure 1. We now consider the integration of MBDS into the
0AS. We approech the integration in five distinct ways.

In the first approach, MBDS is added on as a separate group of worksta-
tions in the 0AS, with its own LAN. We characterize this approach as the
non-integrated dual-LAN design. In this approach, the additional workstations
are dedicated to the database management operations. As such, they are inac-
cessible for non-database activities. We provide the interface process,
(which may include one or more language interfaces) as part of the user-
accessible workstation. The resulting OAS is shown in Figure 3. In this and
the remaining four approaches, the placement of the interface software (i.e.,
the number of workstations and which workstations have the interface
software) is left to the discretion of the database administrator.

W W W "

BAGENDL | ... | BAGENDn

Figure 3. The Non-Integrated Dual-LAN Design

The second approach is the non-integrated single-LAN design. In this
approach, as shown in Figure 4, MBDS and the OAS share a common LAN. However,
the MBDS control ler and backend processors still remain as separate computer
systems in the OAE.

-7-

O G R AR SR AN

o’ w® e 4 an o a” ™. o= gt

I

N T 2y Ty O I
L

SISO
PR A

i TE

“.5
.
ase-b_-a, b

. . -
‘ A
. Ve
o Yt e S
o0 bt
(NP YA .

[}
i

LA A A d
L) ," RN

be

- o O
. _‘: A '.:V"_ l.

';a
. ‘:.':"_':”_'t ;" '." -

s
[ )

2

g Y
P,
et "‘.) ‘e’

0"

4,7,

[4

0
."

Pd




St m AL T b b R v L ORI W ONE Pt SN AR A AR LY A A AP AR L ML S0 AL GACOE: ei wR o oy (P A U SN ANE S s i K™ LR N o ik o - .;
: A k g >

9 t.::.a
3
K . i:..‘% Y

b

; w w b W

: | | © ik
: BACKEND1 | ... | BAGKENDn CONTROLLER sk
. __.:} .

Figure 4. The Non-Integrated Single-LAN Design

The third approach, the partial ly-integrated design, integrates the back-
end processes as permanent background processes into some of the OAS worksta-
tions. The remainder of the MBDS backends are implemented as user-
inaccessible workstations. The mix of the distribution of the backend
processes within the user workstations is controlled by the database adminis-
trator in the OAE. The controller is the key component in MBDS, and should be
devoted to overseeing the management of the database system. Therefore, the
controller software is placed in a2 separate workstation, that is not directly
utilized in the 0AS. The partially-integrated design is shown in Figure 5.

A

E
b.'

| | ]
| ! ! '
BACKEND1 BACKENDm CONTROLLER T
Figure 5. The Partial ly-Integrated Design ;-:

In the fourth approach, the isolated~controller design, the MBDS backend
software is integrated into the existing workstations. As in the partialiy- NIk
integrated design, the controller processes are implemented in a user- Ry
inaccessible workstation. The backend processes are installed as permanent A
background processes in one or more workstations. The isolated-controller ) NS
design is shown in Figure 6. X

)
.

NP A M B et . Sl T N S N O NP Ml Sl N VR TS TRl SRR st e T % % e % M S LV T e L A T S AN S "ty -
PP ..o,’-. 0 1':' i v Y O o ._:. ity _,....: TR _,:.__: o _,: BT IO TR P A \,._\}1-}-. o \,\:_-._.

MRS LA NAT Rl X B WA Py AN




1 8 WL VA SalL AL T LN U O IR AL AP S o g e L R N T PP I IS IS IR F S T R A, ey
. e
»

4

|
CONTROLLER

¢ Figure 6. The Isolated-Controller Design

In the fifth approach, the ful ly~integrated design, the MBDS software is
completely integrated into the 0AS. The control ler processes are instalied as
permanent background processes on one workstation. The backend processes are
installed as permanent background processes on one or more workstations. The
ful ly-integrated design is given in Figure 7.

W

< &

— " q -
RPCPEN RS 4 MMM PO A PNENEX

—— Y

LAN

Figure 7. The Ful ly-Integrated Design

In the non-integrated dual-LAN design, we are using the OAS LAN as a log-
ical two-way communications device for MBDS. Messages are passed from the
interface process of a particular workstation to the controller and from the
controller back to the interface process. In the remining four designs, we
are using the local area network as a logical five-way communications device.
Messages are passed from the interface process to the controller, from the
control ler to the backends, between the backends, from the backends to the

PR B LA
I I OVABAIY

Bl

RN

control ler, and from the controller back to the interface process. :;‘I‘._:‘

- "3*.2
The trade-offs from one approach to the next depend on various perfor- :'.;3:‘3

Y

. mance and cost considerations. The non-integrated spproaches differ only by
the cost of an LAN, but the corresponding performance gains of the dual-LAN
spproach probably outweighs the cost of the extra LAN. In particular, the
burden on the LAN for the OAS is significantly lower in the dual-LAN design.
However, in both these approaches, a high price is paid as the database and
transactions of MBDS grow in size and intensity. The integration of more
backends into MBDS is costly, since the new workstations are only accessible

g AP fs T A
. ".'-‘.".'...I.' _E‘ *,®
L IR TR AL R
. H . [ R -,
P ae g & e s

1]
4 "o's
Al‘r. _'!

T

:,{.':};1. A

--

"ala

.
. . 1)
e 2ot Lo,

i AR ARk

W

. .« o _« a PPN D P S A SR TP SRR PaE ¥
LY '-"-(‘-‘:‘-d:'l':'n".\..'o..'n. Yy '-"-': LS ‘."'~‘.‘. "':.




. n" '_3:.:: a

B
MY N

(3 ]
[ 200 1P

DY

s VAP

*
.
-~
)
2
.
-
A

I TAT R TN AT

to the database management, system.

In such a situation, either the partially-integrated design or the
isolated-control ler design are feasible alternatives. In both cases, keeping
the controller on a non-accessible workstation is a big performance plus. In
the partially-integrated design, as the database size grows, more user works-
tations can be configured into the database system. Further, in both cases
when all backends are being used as backends for MBDS, additional workstations
can be added to either system. In the partially-integrated design, those
workstations can be added as either dedicated database processors or user
workstations. Again, in both cases, the addition of more backends into MBDS is
more cost-effective, if the backends are added as user workstations. We feel
that the fully-integrated design is the least desirable. The controller as
pert of a user-accessible workstation would substantially degrade the perfor-
mence of MEDS as the non-database use of the workstation at which the con-
troller resides increases.

Overs! |, the non-integrated dual-LAN design may yield the highest perfor-
mance (see Figure 3 again). The performance of the non-integrated single-LAN
-9 pertial ly-integrated designs are about the same. However, the partially-

Jrsted design is more versatile and cost-effective. The isolated-
control ler design exhibits a moderate performance capability, but excels as a
cost—effective alternative. Finally, while the fully-integrated design is
cost—effictive, its performance may leave a lot to be desired.

5. SIX GWRACTERISTICS OF MBDS FOR AN EFFECTIVE ROLE IN THE OAE

Regardless of the integration approach chosen, MBDS exhibits certain
characteristics that are desirable in the OAE. These characteristics include
the software portability of the MBDS code, the software independence of the
backend code, the auto-configurability and reconfigurability of MBDS on
account of its use of identical workstations and replicated software, the sur-
vivability of the system resulting from the use of dup!icated directory data,
the versatility of system due to the ability of MBDS to support multiple
language interfaces, and the performance capabilities of the system as a
result of its perallel configuration and round-rcbin dets placement. Each of
these topics is examined in the fol lowing sections.

-10-

L)
e

et N, AT AE M R T

..
aa e Py by P \"'.

AT At e L% N AT e % (N N e LN (N N e STG TEC T, T PR
A A A A R N et

3
-2
....-
ot
"o
P
.
u_':-
DALl

-
"+
[N 4
N of

.y
LS
L

R
P
fk!&’:.a

"%
4’:

b

b e

AT PV

r.-‘rv-i-r‘
LR R
-
x4

’
o

oS e N T

[ PR PR AR
e ] AN
A LR M

,,
TRy
4

LA £

PRy R
! )
Yitat s

7,
.J

t

AR A RS R R
', P
P Llatatehs

£ 0
"

t’ "l 1

[ 1

P AL
]

N

[¢
»

“ ’ l' .. .’ '-
ESENE Bt

b

. "Y'.'
[}

|
B
1A
oy



5.1. Software Portability

: The MBDS processes, i.e., the controller processes, the backend
processes, and the interface process, are all written using the C programming ke
language. C was chosen as the programming language for MBDS because of its \:-:
portability, and its reputation as a good systems programming language. We :zt:'.:
estimate that the code of MBDS is about ninety-five percent portable, consist~ _-C
ing of 13,000 lines of C code. The five percent of system-dependent code f'“,

involves the inter-process message-passing code on both the VAX and the PDP-
11/44s, the inter-computer message passing code for the GET and PUT processes,
and the disk I/0 routines for the record processing process. Thus, the great
majority of the code is portable. In fact, some of the implementation develop-
ment for MBDS takes place on the a VAX~11/780 running the Unix operating sys-
tem, where we are able to take advantage of the C-tools provided by Unix.
Thus, we feel that we have designed a relatively portable database system,
that can be implemented on a wide range of the 32-bit micro-computers on the
market today, e.g., the DEC MicroVAX, the Sun Workstation, etc.

P AR A A Pitele i
R L PR L A N
I P AR [ AN A

17, AL S P LRI

[

‘
e

5.2. Software Independence

In examining the software independence issue, we focus on the backend
processes. The elegance of MBDS is that the backend software of one backend
is identical to the backend software of another backend. For logical reasons,
the directory data, used by each backend when processing requests, is
nevertheless duplicated at every backend. However, the directory data is usu-
ally a small percentage of the non-directory data. Furthermore, the only
sharing of information by the backends occurs in one phase of the directory
search. Otherwise, the directory management, the concurrency control, and the
record processing processes are independent of each other. So, when a new
backend is configured into the system, the software present on one backend is
simply replicated on the new backend. Additionally, the directory data,
duplicated at an existing backend, is loaded into the new backend. When
. bringing a new backend into MBDS, we must also decide on whether to rearrange

the non-directory data. On the one hand, we can redistribute all of the non-
~ directory data across the disk systems of every backend. This involves
o relosding the data. On the other hand, we can simply leave the dats undis-
turbed, loading only new data on the new backend. The choice is left to the
discretion of the database administrator. e,

-
.
.
-
+
-
)
LY
ol
«
v
K
.
i

T
o el el .‘-. ‘_-' , IR TR IR
AP PR, Vit t e
AR W A T R A At
LI RN U A )

N
L)

bt

-.. .'
LN

ti N . RN
2 e _9o_e .
o“'n“ P
) ey

W
L'

-11-

]

I

‘J

[
/‘i

.i

A O S S S R AL, T Rl Ayt Ay ity SIS Aty K i St SR Y



M2 o

e

e AN S

F LR IRY IS
1ne, AR a0

 AWWYYY YN RO

St

S AR ARG (L

5.3. Auto-Configurability

One of the most convenient features of MBDS is the ability to automati-
cally configure and reconfigure the system with ease. When starting the sys-
tem for the first time, the database administrator simply specifies, using the
interface, the number of backends in the system. MBDS then configures itself
by notifying the control ler and backend processes the number of backends on
the system. Using this unique feature, MBDS can be reconfigured when a back-
end becomes inoperable. In such » situation, MBDS is configured with one less
backend. Conversely, when a new backend is added to the system, the system
can be configured with one more backend easily.

5.4. Survivability

MBDS contains only one copy of the non—directory database. When the
database is locaded, it is distributed evenly across all backends’ disk sys-
tems. However, the directory data, which contains index and cluster informa-
tion on all dats in the database, is duplicated in every backend. The distri-
buted directory data, coupled with the software independence and reconfigura-
bility of MBDS, offers an increased survivability of the database system in
the OAE. If a backend or backends become inoperable, the system is still
usable. While a backend is inoperable, a log of transactions that modified
both the directory and the non—-directory data is kept. When the backend is
reconfigured into MBDS, the log is run for the purpose of updating the direc-
tory and other data. Although portions of the non-directory data become inac-
cessible with the inocperable backends, MBDS can still access and retrieve the
rest of the data. Incomplete data is better than no data, provided that the
user is informed of the situation.

5.5. Versatility

One of the biggest advantages of having MBDS as part of an 0AS is the
ability of MBDS to provide support for multiple data models (and therefore
data languages) through the use multiple language-based interfaces. In the
OAE, where users sre from a varied range of backgrounds, such a utility is a
unique festure in a databese management system. In fact, the language inter-
faces can be tailored by the workstation. One workstation could have a SQL
interface, snother a DL/I interface, a third a Deplex interface, and perhaps
still asnother have 3 CODASYL interface. By tailoring the language interfaces
by workstation, the software required for each interface process could be

-12-

~f'.f‘.'~‘:",..; \""."‘5"&.({1' S R A A -‘:¢<'..:.. S e .'.‘- .-j’

DA A

_. - X Y . .'
RIS S A N

A R AN R I

=
e -
AL}
-
ot
-* e
T
!
Rl
e
DAY
LR
tor e
N
[T
|
locaaned
NN
.

o
-

ey 8, °
G % %N
S
el

[/

YXAAN { B0
ALY BT

AR

e

»
§,
.

" ag % 0% %-
7’
'l' .f .'(:.':.{‘ N

{7

L4
)
[/

[FAA

%



reduced. Conversely, with a wide range of language interfaces available at
every workstation, the workstation becomes more accessible to a wide rangs of
users.

5.6. Performance

The performance capabilities of any DEMS are important in an OAE, since
the DBMS tends to serve as a repository of all the permenent data and programs
of the OAE. As the repcsitory becomes large and the database activities
increase, the DBMS as a database server may become the performance bottleneck.
However, MBDS is specifically designed to provide for capacity growth and per-
formance enhancement. The performance metric of major concern is the response
time of a request. The response time of » request is the time between the
initial issuance of the request and the receipt of the final results for the
request. MBDS has two original design goals. First, if the database capacity
is fixed and the number of backends is increased, then the response time per
request reduces proportionately. For example, if a request had a response
time of 60 seconds when there is one backend, the same request would have a
response time of nearly 30 seconds when there are two backends, and of nearly
15 seconds when there are four backends, provided that the database size has
remained constant.

The second goal is stated that for the same requests, if the response
sets are increased due to an increase of the database size and the number of
backends is increased in proportion to the increase of response set, then the
response time per request remains the same. For example, if a request had a
response time of 60 seconds when there is one backend with 1000 records in the
response set, then the same request would have a response time of close to 60
seconds when there are two backends and 2000 records in the response set. The
underlying concept in each goal is that MBDS in the OAE would supply a date-
base system that would grow as the OAS grows, and would either increase or
maintain a constant response time per request by ’growing’ its backends or
half a given response time per request by ’doubling’ its backends. On the

. basis of our preliminary analysis, the operational MBDS can indeed meet the
two goals. The analysis is also documented in [TekaB4].

6. CONCLLUSIONS

We have showmn how MBDS can play an important role in the OAE ss an
Specifically, we have showmn how MBDS can provide both traditional and new

e Pt
e T N N N e N

L al

- ® 8 v s e @ uw - “pemoa C M TR S "2 ATA RV eV Ny, QRN LW LW N g
T T d‘..l . . .‘: .‘v.\i'..-: N i -.-'.: \'\.v:\*\-'sc:_'v'\-‘\.\n'\.'\f\-“'f‘f Iﬂ'* > v'\g"i ‘\‘.N'. '.\f L)




database support. We have also shown why and how MBDS should be integrated
into an OAS, i.e., what MBDS has to offer to an GAE. In particular, MBDS can
be integrated into an GAS in a number of ways, depending upon the nesds of the
office automation environment. Once MBDS is configured in an OAS, the recon-
figurability feature, coupled with the replicated backend software structure,
permits the database system to grow as the needs of the office information
grow. Additionally, when MBDS expands, the response time per request for the
system decreases proportionately, as long as the database aize remains con-
stant. As the database grows in size so grow the responses, MBDS can maintain
the response time for the same type of database services by expanding its
backends.

As a2 multi~lingual database system, MEDS offers the ability to access the
database using a variety of l|angusge interfaces. From the basic deta
language, ABDL., to sophisticated data languages such as SO, Daplex, CODASYL
and OL/I, the user can select a language to query. the database. The high
degree of software portability exhibited by MSDS, allows the system to be
implemented on a wide range of micro~computers, offering database support for
a wide range of office automation systems. Overal!, we feel that MBBS is an
ideal database system for the office automation environment.

-14-

7 RN X : X X J'.;a:..-'..'d:..d'.;-"'.-'..:.'f\f‘.- e . o X ..- LT - > At




'
"
+
i
.
o
J
\
\
"
Y
3
N
>
N
N
y
.
E
3
¥v

Batatasie ui N Botabial tachines, ¥ Brofedings BF Retiins! X

éongforonce,

Frovm) Beiecies, B 8L WAMSINR, D X pinoin st ot

Bener jee, 20, nd hb, IOﬂ.
e ..1::“"*-’”3. m'“wm!rm,?m;%“ 2

ﬁv
%ggan;é ¥ n Ewmhm, Lepﬁ’ 3&' and l.hsslkg%f
) ‘Springer-Ve , 1
Brkol e, £, g1, e Imlepiain gy
[]
Pﬁg— 52-83-003, val gostgraduate School Iénterey, glcforma, Merch 1988 '
I f " i
g?;glnt I-RPy:;ard'el Co:rn:uurl\é%tnon Link Differential TDM Bus," Digital

i Iti k
rJn?l'l&) Part ~ The Re urrenOf .tngu arlnd ,.:29

;: nagement. ne%szg?smea ec"zn\?/ca?vll\‘ Wm g ter ostgraduag

terey, alifornia, March

a "The Implement.at, on of a Mul a -Bac System
hme :E:hntgt;re',}hlelsmo (gnd) Prentace Hauﬂpe vanc

é';'?}?;'] #g' P K es" ngonmmcatnoﬁé :;? the% v’ft"i'.,fﬁo %nfermtnon

970, rrigenda Vol 13

and Anel Sis of' y

&b»%*f‘%m“t&f& SR, Pt R

Umversut.y, 0110. July 1
a8lb] Hsiao . K. "Des and Aeolysus
Mult.n-Backend Bat.a ge r'ovemen ity
gxp?hnzng:'ongta tga&!‘ ?{ersr%;): é?rt H), , gc;:hxlca 8&)—8@0%-81-

rr82] rr, ‘e © al ntation of a Multi-Backend
g;: (‘@ B*’gchmc:I E”Bm?%— -82“§ e#h:ng:?? tata mU'\Te:r:

sat.y, fumbus, Ohio, January

|th "Desn and Analysu of .an SQ. nterface fo M.:lti-
k nd] ?agaa g;‘ , Na radu , Mon-
tere;, California, Dgrch 1984 esis val Fostg ate

L
&’&Z:lgg 'ocalfe, R gonpu‘be mrk "Ca;numgmxto 'm' , Vol . 18"‘

i:hlﬂ] M“-geckg? '& E:;gn and Analysus of ”:: .S'Om;inaos ratnort::
hoo terey, nforma, June

Nl

R S ST SRS

N T T N L R N R MR KA N N A T TR - T T e T —!-._-J-z’:
¥ -

o4
1

¥

v NIRRT
" e, DY R A
L » . .

‘ AR .

S B VR P
o', LALLM
"o oo

F XA

3]

P
RARARN

~=

% RS

e

.
FJ

o



e cw - wee

Bt B L T R

T oo o mon e

’'s Thesis,

l:ac;’?%l ‘W&ﬂ?r! D.&\;- ign and Anal_y.:»'i's of arwsl:ﬁghre.rc':hicﬂ Frter-

, Califormia, X

P oG a8t G, » o TRk s of the ROL “Septener 1oL, "o e Buesd

APPENDIX A: THE MULTI-BACKEND DATABASE SYSTEM

In this sppendix we examine the structure of the multi-beckhend databuse
system, focusing on the data model, i.e., the attribute-besed data model, the
data language, i.e., the attribute-based data languege (ABDL), the process
structure, the system configurstions, and the ability of MEDS to support mul-
tiple dats models and database languages.

A.1 The Attribute-Based Deta

In the attribute-based data model, data is modeled with the constructs:
database, file, record, attribute-value peir, directory keyword, directory,
record body, keyword predicate, and query. Informally, a databese consists of
a collection of files. Each file contains & group of records which sre
characterized by a unique set of directory keywords. A record is compcssd of
two parts. The first part is a collection of sttribute-valus peirs or key-
words. An attribute-value pair is s member of the Cartesian product of the
attribute name and the value domain of the sttribute. As an example, POPU-
LATION, 25000> is sn sttribute-value pair having 25000 ss the wvelue for the
population attribute. A record contains at most one sttribute-value pair for
each sttribute defined in the databese. Certain attribute-velue peirs of @
record (or a file) are called the directory keywords of the record (file),
because either the attribute-value peirs or their sttribute-value ranges are
kept in a directory for addiressing the record (file). Those attribute-value
peirs which are not kept in the directory for addressing the record (file) are
called non-directory keywords. The rest of the record is textusl informetion,
which is referred to ss the record body. An example of a record is shown
below.

v e e e
) r
' SRR L " .,

2¥a %y’

P

"adi -:;'ﬁ

my .':'I-E'.
4 " c'.

et A et A

"

a
€ ¢

SO
AP D R




( FILE, Census>, <CITY, mn)o{ maﬂg“m,)

The angle brackets, <,>, enclose u»n attribute-value pair, i.e., keyword. The
curly brackets, {,}, include the record body. The first attribute-value pair
of all records of a file is the same. In perticular, the attribute is FILE
and the value is the file name. A record is enclosed in the parenthesis. For
example, the sbove sample record is from the Census file.

The detabsse is accessed by indexing on directory keywords using keyword
predicates. A keyword predicate is » tuple consisting of an attribute, a
relational operator (=, !=, >, ¢, >=, <=), snd an sttribute value, e.g., POPU-
LATION >= 20000 is a keyword predicate. More specifically, it is a greater-
than-or-equal-to predicate. Combining keyword predicates in disjunctive nor-
mal form characterizes a guery of the databsse. The query

CEREZ & M EY - sy 3 o
will be satisfied by all records of the Census file with the CITY of either

Monterey or San Jose. For clarity, we also employ parentheses for bracketing
predicates in a query.

A.2 The Attribute-Based Data Language (ABDL)

The ABDL supports the four primary database operations, INSERT, DELETE,
UPDATE, and RETRIEVE. A request in the ABDL is a primary operation with a
qualification. A qualification is used to specify the information of the
database that is to be operated on. Two or more requests grouped together
characterize a transaction. Now, let us briefly examine the four types of
requests.

The INSERT request is used to insert a new record into the database. The
qualification of an INSERT request is a list of keywords which describe the
record being inserted. Example 2.1 contains an INSERT request that

Example 2.1: INSERT ( m, Eg{pagger&i_we %p&rﬁt;es&),

that will insert a record into the Computer Science Department file for the
employee Hsiao with a salary of $50,000.

0] PRI N S S A T [N NS S S S IR AL IR TR T Tt N T 'n‘. '..".!_1 \.-.n M AR ARSI S T I S T ]
_-.’:-.-'-.",\ * TN N e o s A R RN -._.-".. A J'\.:\. ARALY }_ :\..\ :\ " :_‘.\ -.‘_ R _“.‘,\ ..\ _.\ )\_. . QW v,

.._- \i \- N- \1 \q \h\




by . e W L] 1 ] .
3 ,‘f.;J‘,.a,_a.:f...-sf..f

A DELETE request is used to remove record(s) from the database. The
qualification of a DELETE request is a query. Example 2.2 is a request that

Example 2.2: DELETE ( % gam )lence Department) &

would delete all records whose salary is greater than $100,000 in the Computer
Science Department file.

An UPDATE request is used to modify records of the datsbase. The qualif-
ication of an UPDATE request consists of two parts, the query and the modif-
ier. The query specifies which records of the databsse are to be modified.
The modifier specifies how the records being modified are to be updated.
Example 2.3 is an UPDATE request that

Example 2.3: UWPDATE ( % m ?ém)W)

will modify all records of the Computer Science Department file by. increasing
all salaries by $5,000. In this example, ( (FILE = Computer Science Depart-
ment) ) is the query and (SALARY = SALARY + $5,000) is the modifier.

Lastly, the RETRIEVE request is used to retrieve records of the dstabase.
The qualification of a retrieve request consists of a query, a target-list,
and a BY clause. The query specifies which records are to be retrieved. The
target~list is a list of output attributes. An aggregate operation, i.e.,
AVG, COUNT, SUM, MIN, MAX, may be applied to one or more attributes in the
target~list. The optional BY clause may be used to group records when an
aggregate cperation is specified. The RETRIEVE request in Example 2.4 will
retrieve

Example 2.4: RETRIEVE ( (FII.E(EI%lgutor Scriy g&p?mt) &

the employee names of all records in the Computer Science Department file with
city being Monterey. ( (FILE = Computer Science Department) &
(CITY = Monterey) ) is the query and (NAME) is the Target-List.

Obviously, ABDL is considerably more complete than the aforementioned
examples have shomn. For our purpose, these examples will suffice.

-18-

B N NN R AN e N S, CORE L SO AL Lt

o . W M Y T T W g LI A
AT SRR SN, T G, e Syt R e e ey 20 Runet S AL Vi) 50 S0 SR TR, X a ot YR P

LA S A

L4
P A Al A
Vo

e

N

7,474,080,

| Ie

. .
8 & g0

0t .
9 '0s% %6t

:{’n 7y RN
5

T .

o

"-'Tf ey 2."'.
.- ] ‘..')‘.f‘.r.l'::‘~0" 2

+

KIS P~ PO R
; [

-.’s’.:’ﬂ'f%'

2L

v . Te
O P

& s

%)
L ." o

\‘t,
8
A

0y

a e



RN ey i T v g Il T - v —
- ATt T P IR S TR A SR AT A S A I it V] PRC RN e b

A.3 The Process Structure

Currently, MulBac/DBS does not communicate with a host machine. The
absence of this communication requires that the test interface process, the
process used to interact with MuilBac/DBS, be placed in the MulBac/DBS ocon-
troller. In this section we describe the process structure of MulBac/DBS.
First we present the test interface process, which is used to access the sys-
tem. Next, we review the processes of the controller. Finally, we describe
the processes of each backend.

A.3.1 The Test Interface Process

The test interface process is a menu-driven interface to the MulBac/DBS.
The main actions of the test interface are, loading a database, generating a
database, and executing the request interface. When executing the request
interface, the user has the option to chocse a new database to work with,
create a new list of traffic units, modify an existing list of traffic units,
select traffic units from an existing list for execution, select an existing
list so that all traffic units on the list may be executed, or specify the
display mode of the results.

A.3.2 The Processes of the Control ler

The controller is composed of three processes: request preparation,
insert information generation, and post processing. Request preparation
receives, parses and formats a request (transaction) before sending the for-
matted request (transaction) to the directory management process in each back-
end. Insert information generation is used to provide additional information
to the backends when an insert request is received. Since the data is distri~-
buted, the insert only occurs at one of the backends. Thus it must determine
the backend at which the insert will occur, along with certain directory
information. Post processing is used to collect all the results of a request
(transaction) and forward the information back to the host computer.

A.3.3 The Processes of Each Backend

Each backend is also composed of three processes. They are of course dif-
ferent from the controller processes. They are: directory management, con-
currency control, and record processing. Directory management performs the

-19-

o t . "t . o - - '. et e « s a'am e
oooooo L Lad o e » B L)
L ) A NS PR '. AP A P S R P ‘n TSI N ..& T e s M ta LS

)
YV NN

Yy
PP,

1

20




4

4 WA i A Y

"ll‘l.‘

o, &, GRS

LR O ol WA

;

DALY

¥ P B SN - S N e M e e ¥ ol IR R B BTN i D e Sur e a sl et~ o M (o s Yo A TP S B

ssarch of the directory structure to determine the secondsry storage addresses
necessary to access the clustered records. Concurrency control determines
when the request can be executed. Record processing performs the operation
specified by.the request.

A.4 The Current and Future Configurations

The current hardware configurstion of MBBS.consists: of: a VAX-11/780. run-

ning as the controller and two PDP-11/44s running as backends. Communication.

between computers in MBDS is achieved . by using a time-division-multiplexed bus
called the parallel comunication link (RCL-118) [DEC79]. There are:a total
of three P(Ls in the configuretion, two from the: VAX-11/780 to the POP-11/44s,
and one betwesn the two POP-11/44s. When the implemeritatiion of MBDS begen in
19680, the required broadcast. bus wes not available. Even though we. requiredia
broadcast bus for our-design, the PCL was chosen. The VAX-11/780 runs. the WS
operating system, with the POP-11/44e running the RSX-11M cperating system.
The VAX-11/780 serves a:-dual purpose in the current configurstion, as
both the host computer and the controller. In addition to the controlier
processes described in Section 2.3, we have also implemented the interfece

process on the VAX. Given the large virtus!i and primary memory capacities of

the VAX, we felt that the additional overhead of rumning the interface: process
in the controller would not be substantial. The PDP-11/44s contain only the
backend processes. Plans are being mede to replace the POL-11Bs with an
Ethernet~like broadcast bus and the VAX-11/780 and PEP-11/448 with
mi rcroprocessor-based (U and winchester-type disk systems, and incresss the
number of backends and.their disk systems to six.

A.5 Supporting, mlvt-iple Language-Based Interfaces

Typically, the design and implementation of s conventional datsbesse sys-
tem bagins with the choice of a data model, the specification of a model-based
data |language, and the design and implementation of a databsse system which
controls and executes the transections written in the data language. Thus, we
have the relational model, the SG. language and the S@./Data System. Simi-
Isrly, we have the hierarchical model, the DL/I language and the IMS system.
We may also have the case of the CUDASYL model, language and system. The con-
ventional approsch to the design and implementation of a system is |imited to
s single data model, @ specific data language and @ homogeneous database

-20-

B Be Lo Sad Bad Tl L At B A Rl A ngey ® B . . , - - . - . . .- cma g
S G S A TR At A o Y A A A A A T RGO e, AL NS A RS A AN TR

- .

¥

g . -
1 RS

CETOTLT
4 ““..".‘
@

S

-
Fd
]

3 :— 3
ONF b4
% W

3 gk Al
L

X
.

N " ' et

\:I ",

FR~
BN
P s

-.Y‘.
L
(SRR



I s e S R NG L e v ¥ Pt AT N I
LI N I SRR ) PP ARSI AL B B B W M ha® ot al s T AT

system. However, the attributed-based model and the attribute-based data
language of the muiti-backend database system (MBDS) are sufficiently powerful
and high-level and can support multiple data models and several model-based
languages as if the system were a heterogenecus collection of database sys-
tems.

This unconventional design and implementation approach reveals two impor-
tant database concepts. First, that the attribute-based model is an exceed-
ingly simple yet powerful data model, such that many other data models may be
realized easily by using this data model. Second, the data language of MEDS,
| i.e., the attribute-based data language ABDL, consists of high-level and pri-
: mary operations, such that most of the other model-based language constructs
l can be mapped into ABDL in a straightforward fashion. There could be an SQ
interface so that the transactions written in SQL can be carried out by MBDS.
The execution of the transactions requires the SQL constructs to be
transformed into the primary operations of ABDL through the interface. Simi-
larly, there could be a DL/I interface so that the transactions written in
DL/I can also be carried out by the interface. In this way, the single date-
base system and multiple interfaces allow the system to support multiple data
models and data languages as if it were a heterogeneous collection of database
systems. In practice, we can construct a number of interfaces to support
relational, hierarchical, and network operations with a minimal effort. Such
an approach is clearly an attractive alternative to the approach where
separate, stand-alone systems must be developed for specific models.

R
Tl

Lj
e R A L §
»

-8
a .Il.'-l

The procedure to construct a relational, hierarchical, or network inter-
face to MBDS is done at both the database and data language levels. At the
database level, the series of papers [Bane78a, Bane78b, BaneSO] demonstrated
that a relational, hierarchical, or network database can be converted into an
attribute-based database. At the data language level, we focus on the
development of language interfaces to the attribute-based system consistent
with the user’s chosen language. At this level, we address three issues. The

i . first issue is to determine how the operations of the chosen language can be T
t implemented using the operations of MBDS. The second issue is the translation ’.,
] of the language of the interface to the attribute-based data language. The
Y third issue is the placement of the language interface within MEDS. i
Our current work on language interfaces to MBDS is at the design level. ";;::.

The two interfaces we have designed are for SO [Macy84, Rol184] and for DL/I E&

5

e

v et N e e N PRS0 Na? S NN X .-\‘.""‘~. -
; e, = g P Y AP AL L PR TSR] . ‘-'-"l'- . X Cor e f._'_ LRI '..‘.."l.-.‘. St T,
R RN }L‘):':':'.":‘.‘:J‘:’ :. ,-:p:f:.':d‘:f:f:-':f:{:{‘.{:{ - ':'wt'v“:\t'::'\'.'-'-'q .'-i'-i“ LALS S L it DAL AT SO I ACAL AL




L4 W R RSN

A €. aj s, 0, 0, 8 4y

IS TN S

0 &

3%

R MR M A S SN SRS AN LU AN SRt

[WeisB4]. To facilitate the development of the SQL interface, we also have
developed algorithms to implement the sort and merge algorithms in MBDS
[MuidB4]. Using these designs, we plan on implementing the two interfaces in
the coming months. In addition, we will be publishing a number of papers on
interface development and implementation. It is sufficient to say that data-
base support in an office automation environment should be multi-lingual in
database management.

-22-

,‘fsgf.;f ‘.w,;e.;f,;a,:;-;.,-,;.:_:.-;,;.- _:.:._: ’.:.:-F '}_:.r,:.-;w{.- GG NG .;-\;J.:. o ,:‘:.- O O RGN AR

iy ‘-\.-.‘..'. '~ oty RN, o

.

N

LA S NN
" Pl W * .
RN

-»




INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
. Cameron Station
Alexandria, VA 22314
A Dudley Knox Library ' 2
Code 0142
Naval Postgraduate School o
: Monterey, CA 93943 S
; Office of Research Administration 1 1.
y Code 012A RN
Naval Postgraduate School
Monterey, CA 93943 e
. ‘\‘:’-..:
: Chairman, Code 52ML 10 : i
! Computer Science Department S
Naval Postgraduate School _ B
‘ Monterey, CA 93943 )
: Prof. David K. Hsiao, Code 52Hq 130
: Computer Science Department
Naval Postgraduate School
Monterey, CA 93943
2 Chief of Naval Research 1
y Arlington, VA 22217
.
4 -
‘."i"i
A
| S
‘.f"-.‘.'\
-
ey
NG
N e
R
o]
“»

H *
=
2 .'.': .a"': 'A.
LAY
*ﬁi»ﬂﬁﬁil

e
3,
2

.

i3

X
il

,
’l

I R

L’ ST L?

[ B ’l, o 50
p (."I Ar‘ .{"

¥e

‘7:’
2o

&
by

S e N R F B BN O o o R R N A S S S o






